POCA-10

Преобразователь измерительный температуры и влажности

- Микропроцессорные преобразователи температуры и влажности
- ЖК-индикатор
- Выходной сигнал 4...20 мА
- Измеряемая температура –40...+110 °С
- Измеряемая относительная влажность 0...100 %
- Вычисляемые параметры: температура точки росы (-40...+80 °C), абсолютная влажность (0...18 г/м³), объемное влагосодержание (0...25000 • 100 / Р млн⁻¹)
- Варианты исполнения: общепромышленное,
 Ex (ExialICT6 X), Атомное (повышенной надежности),
 OM (Речной и Морской Регистры РФ), тропическое
- Внесены в Госреестр средств измерений под №27728-09, ТУ 4215-055-13282997-04

Сертификаты и разрешительные документы

- Свидетельство об утверждении типа средств измерений RU.C.32.002.A № 37492
- Сертификат соответствия № РОСС RU.AE68.H12393
- Ростехнадзор. Разрешение № РРС 00-36575 на применение приборов
- Российский Речной Регистр. Сертификат об одобрении типового изделия АИР-10/М2
- Казахстан. Сертификат о признании утверждения типа средств измерений № 6547

Назначение

Преобразователи измерительные температуры и влажности РОСА-10 предназначены для измерения температуры и относительной влажности, расчета температуры точки росы-инея, абсолютной влажности и объемного влагосодержания газообразных сред и непрерывного преобразования их значений в унифицированный электрический выходной сигнал постоянного тока 4...20 мА или 20...4 мА.

По типу обработки сигнала РОСА-10 относится к микропроцессорному изделию.

Преобразователи РОСА-10 применяются при измерении гигрометрических характеристик газов в системах автоматического контроля, регулирования и управления технологическими процессами в промышленности, энергетике и сельском хозяйстве.

Модификации

Таблица 1

Вариант монтажа	Код
Канальный	/M1, /M3
Настенный	/M2, /M4

Краткое описание

- первичный преобразователь влажности емкостной чувствительный элемент НС1000;
- первичный преобразователь температуры Pt500;
- значения абсолютной влажности, температуры точки росы-инея получаются путем расчета из измеренных значений относительной влажности и температуры;
- первичные преобразователи температуры и влажности защищены специальным проницаемым колпачком;
- преобразователи РОСА-10 могут подключаться к компьютеру посредством интерфейса RS-232 для градуировки и конфигурирования; связь с компьютером осуществляется через модуль интерфейсный с гальванической развязкой МИГР-02 (модификации /М1 и /М2) или МИГР-04 (модификации /М3 и /М4) производства НПП «ЭЛЕМЕР»;

- питание РОСА-10 осуществляется от источников постоянного тока напряжением от =12 до =36 В, при номинальном значении =24 В или =36 В;
- мощность, потребляемая РОСА-10, не превышает:
 - 2 Вт для напряжения питания =36 В,
 - 1,4 Вт для напряжения питания = 24 В;
- время установления выходного сигнала (время, в течение которого выходной сигнал РОСА-10 входит в зону предела допускаемой основной погрешности) не более:
 - для канала измерений влажности 5 мин,
 - для канала измерений температуры 20 мин;
- допускаемое давление измеряемой среды 2,5 МПа;
- степень защиты корпуса от пыли и влаги IP65;
- масса 0,4...1,0 кг (в зависимости от исполнения);
- межповерочный интервал 2 года;
- гарантийный срок эксплуатации 1 год.

Таблица 2. Варианты исполнения

Варианты исполнения	Модификация	Код при заказе		
Общепромышленное		_		
Тропическое	10.02 10.00	Т		
Атомное (повышенной надежности)	/M3, /M4	Α		
Для применения на судах (Речной и Морской Регистры РФ)		ОМ		
Взрывозащищенное «искробезопасная электрическая цепь»	/M1, /M2	Ex		

Таблица 3. Климатическое исполнение

Вид	Группа	гост	Диапазон	Код
	C2*	ГОСТ 12997-84	−40+70 °C	t4070
_	C3*	1001 12997-84	−10+70 °C	t1070
Т3			−25+80 °C	t2580
Т3	_	ГОСТ 15150-69	−25+70 °C	t2570
УХЛЗ.1			−41+70 °C	УХЛ4170

^{* —} только для POCA-10Ex/M1 и POCA-10Ex/M2.

Таблица 4. Индицируемая величина

Индицируемая величина	Код
Нет индикатора	_
Величина в 1-ом канале	Н
Величина во 2-ом канале	Т
Величина в 1-ом и во 2-ом канале попеременно	нт

Электромагнитная совместимость

По устойчивости к воздействию электромагнитных помех РОСА-10 соответствуют по ГОСТ Р 50746-2000:

- группе исполнения IV и критерию качества функционирования А для всех видов помех, кроме микросекундных импульсных помех большой энергии (МИП);
- группе исполнения III и критерию качества функционирования А для микросекундных импульсных помех большой энергии (МИП).

Метрологические характеристики

Таблица 5. Пределы допускаемой основной погрешности измерения

	Vananta		Пределы допускаемой основной погрешности							
Измеряемая величина	Условное обозначение величины	Диапазон измерений		анного выходного нала	по измеряемой величине					
	величины		Α	Б	A	Б				
Относительная влажность ф		0100 %	±2 %	±3 %	±2 %	±3 %				
Абсолютная влажность (при t = 20 °C)	α	018 г/м³*	±2 %	±3 %	±2 %	±3 %				
Температура точки росы-инея	T _D	–40+80 °С т. р.	±1 °C** ±2 °C*** ±4 °C****	±1,5 °C** ±3 °C*** ±6 °C***	±1 °C** ±2 °C*** ±4 °C***	±1,5 °C** ±3 °C*** ±6 °C****				
Температура Т		−45+110 °C	±(0,2 + 10 ⁻³ · D) °C	±(0,3 + 10 ⁻³ · D) °C	±0,3 °C	±0,4 °C				

^{* —} при увеличении (уменьшении) температуры анализируемого газа на 10 °C диапазон измерений увеличивается (уменьшается) в 1,8 раза.

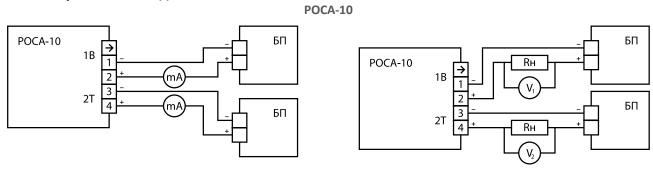
^{** —} для T – T_D< 20

^{*** —} для 20 < T – T₀< 50

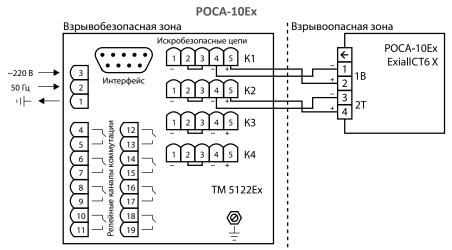
^{**** —} для 50 < T – T_D< 60

Допускаемая основная погрешность измерения абсолютной влажности и влагосодержания γ_n , приведенная к диапазону преобразования D, вычисляется по формуле

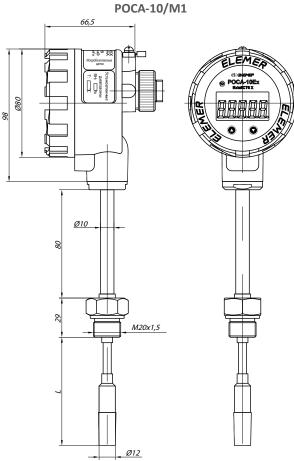
$$\gamma_{\Pi} = \gamma \cdot (D_{_{\rm M}} / D_{_{\rm \Pi}})$$


где γ — допускаемая основная погрешность в % от диапазона измерений; $D_{_{\rm I}}$ и $D_{_{\rm T}}$ — диапазоны измерений (при данных температуре и давлении анализируемого газа) и преобразования соответственно.

Диапазон преобразования может не совпадать с диапазоном измерений и устанавливается в соответствии с заказом на предприятии-изготовителе.

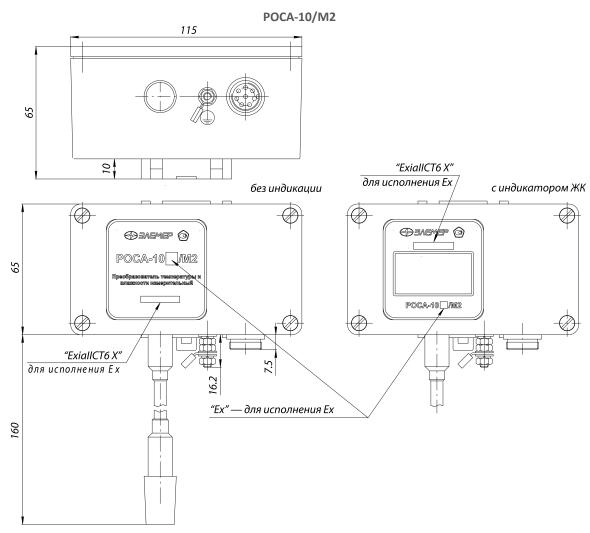

Дополнительные погрешности:

- предел допускаемой дополнительной погрешности РОСА-10 во время воздействия вибрации не превышает предела допускаемой основной погрешности;
- дополнительная погрешность РОСА-10, вызванная изменением температуры окружающего воздуха от нормальной (20±5) °C до любой температуры в пределах рабочих температур на каждые 10 °C изменения температуры, не превышает 0,5 предела допускаемой основной погрешности;
- дополнительная погрешность измеряемой влажности РОСА-10, вызванная изменением температуры анализируемого газа на каждые 10 °C изменения температуры в диапазоне измерений температур, не превышает 0,5 предела допускаемой основной погрешности;
- дополнительная погрешность РОСА-10, вызванная воздействием повышенной влажности, не превышает 0,2 предела допускаемой основной погрешности;
- дополнительная погрешность РОСА-10, вызванная воздействием постоянных магнитных полей и (или) переменных полей сетевой (промышленной) частоты напряженностью до 300 А/м, не превышает 0,2 предела допускаемой основной погрешности.

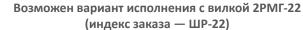

Схемы электрические соединений

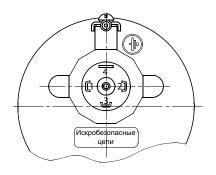
- 1В выходной измерительный канал влажности;
- 2Т выходной измерительный канал температуры;
- * в качестве источника питания для невзрывозащищенных преобразователей РОСА-10 можно использовать источники питания постоянного тока, выпускаемые НПП "ЭЛЕМЕР".

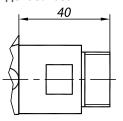
Габаритные, присоединительные и монтажные размеры



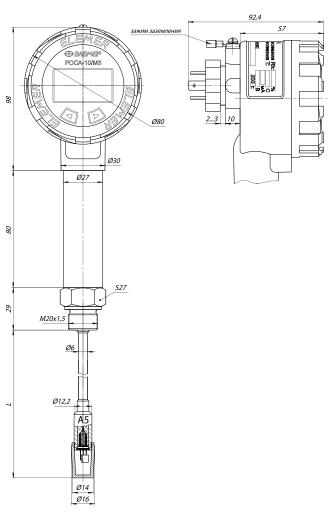
L — длина монтажной части 100, 120, 160, 200, 250, 320, 400, 500, 630, 800, 1000 мм.

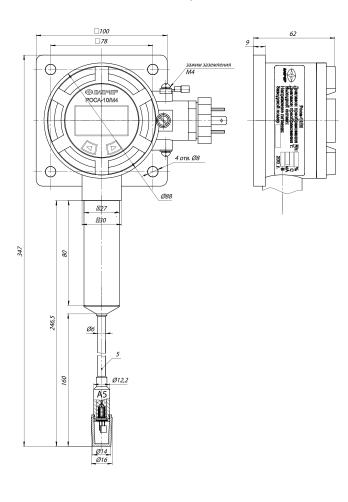



Под крышкой корпусов РОСА-10 расположены:


- 1. разъем ХТ1 для подсоединения первой токовой петли 4...20 мА и нагрузок;
- 2. разъем ХТ2 для подсоединения второй токовой петли 4...20 мА и нагрузок;
- 3. разъем XP6 для подключения к компьютерному интерфейсу RS-232;
- 4. разъем XP1 для подключения термопреобразователя сопротивления;
- 5. разъем XP2 для подключения чувствительного элемента влажности; 6. разъем XP3 для измерения тока от преобразователя давления;
- 7. разъем XS9 для подключения индикатора;
- 8. разъем XP4 для возможности подключения к микропроцессору чувствительного элемента влажности с потенциальным выходом;
- 9. кнопки для корректировки токовых выходов;
- 10. кнопки для корректировки токовых выходов;

Вид сзади РОСА-10/M3 с внешним разъемом GSP 311





POCA-10/M3

POCA-10/M4

 $\mathsf{L}-\mathsf{д}$ лина рабочей части (100; 160; 200; 250; 320; 400; 500; 630; 800; 1000) мм.

Пример заказа РОСА-10/М1 и РОСА-10/М2

POCA-10	Ex	M1	0+100 °C	0100%	В	t1070	160	–	GSP	ПО	360∏	гп	ТУ
1	2	3	4	5	6	7	8	9	10	11	12	13	14

- 1. Тип преобразователя
- 2. Вариант исполнения Ех
- 3. Код модификации (таблица 1)
- 4. Диапазон преобразования величины в 1-ом канале и ее индекс заказа (единица измерений) (таблица 5). Базовое исполнение относительная влажность 0...100 %
- 5. Диапазон преобразования величины во 2-ом канале и ее индекс заказа (единица измерений) (таблица 5). Базовое исполнение 0...+100 °C
- 6. Индекс заказа для класса точности (таблица 5). Базовое исполнение класс В
- 7. Код климатического исполнения (таблица 3). Базовое исполнение t1070
- 8. Длина рабочей части L, мм (для POCA-10/M1: 100, 160, 200, 250, 320, 400, 500, 630, 800, 1000; для POCA-10/M2 не заполняется)
- 9. Наличие индикации одна из величин 1-го или 2-го каналов (таблица 4). Базовое исполнение без индикации
- 10. Коды вариантов электрических разъемов (для для POCA-10/M2 только PLT-168-R):
 - PLT (вилка PLT-168-R)
 - GSP (вилка GSP311)
 Базовое исполнение PLT
- 11. Наличие МИГР-02 + программное обеспечение для конфигурации преобразователя (индекс заказа ПО)
- 12. Дополнительные стендовые испытания в течение 360 ч (индекс заказа 360П)
- 13. Госповерка (индекс заказа ГП)
- 14. Обозначение технических условий (ТУ 4215-055-13282997-04)

Пример заказа РОСА-10/М3 и РОСА-10/М4

	POCA-10	Α	/M3	4	0+100 °C	0100 %	В	t1070	160	Н	GSP	ПО	360∏	ГΠ	ТУ
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

- 1. Тип преобразователя
- 2. Вариант исполнения (таблица 2). Базовое исполнение общепромышленное
- 3. Код модификации (таблица 1)
- 4. Класс безопасности для вида исполнения с кодом при заказе А:
 - 2, 2H, 2У, 2НУ, 3, 3H, 3У, 3НУ (с приемкой уполномоченной организацией ОАО «Концерн Росэнергоатом»)
 - 4 (без приемки)
- 5. Диапазон преобразования величины в 1-ом канале и ее индекс заказа (единица измерений) (таблица 5). Базовое исполнение относительная влажность 0...100 %
- 6. Диапазон преобразования величины во 2-ом канале и ее индекс заказа (единица измерений) (таблица 5). Базовое исполнение температура 0...100 °C
- 7. Индекс заказа для класса точности : А, В (таблица 5). Базовое исполнение класс В
- 8. Код климатического исполнения (таблица 3). Базовое исполнение t1070
- 9. Длина рабочей части L, мм (для POCA-10/M3: 100, 160, 200, 250, 320, 400, 500, 630, 800, 1000; для POCA-10/M4 не заполняется)
- 10. Индицируемая величина одна из величин 1-го или 2-го каналов (таблица 4). Базовое исполнение НТ
- 11. Коды вариантов электрических разъемов:
 - GSP (вилка GSP311)
 - ШР14 (вилка 2РМГ-14)
 - ШР22 (вилка 2РМГ-22)
- 12. Наличие МИГР-04 + программное обеспечение для конфигурации преобразователя (индекс заказа— ПО)
- 13. Дополнительные стендовые испытания в течение 360 ч (индекс заказа 360П)
- 14. Госповерка (индекс заказа ГП)
- 15. Обозначение технических условий (ТУ 4215-055-13282997-04)